Westfälische Wilhelms-Universität

&npsb;

Kommunikation, Netzwerke und gesellschaftliche Rahmenbedingungen, Technology for Business Analytics

Ein Großteil der Daten, die mit dem Label „Big Data“ bezeichnet werden, entsteht aus Interaktions- und Kommunikationsprozessen von Menschen in Online-Netzwerken. Die Bedeutung solcher Daten erschließt sich nicht allein aus einer rein technischen Betrachtung – vielmehr handelt es sich um Verhaltensspuren, die erst unter Zuhilfenahme gesellschaftswissenschaftlicher Ansätze einen tieferen Sinn erhalten. Will man ‚Big Data’ verstehen, muss man sich folglich mit den Logiken, Abläufen und Strukturen gesellschaftlicher Kommunikationsprozesse auseinandersetzen. Kommunikationswissenschaftliche Forschung bietet hierzu sowohl theoretische wie methodische Ansätze, und darüber hinaus ein Repertoire an empirisch gesicherten Kenntnissen.

Das Modul gibt einen Überblick über zentrale Perspektiven auf Online-Kommunikation und die wichtigsten Forschungsergebnisse, die bei einer Analyse hilfreich sind. Zudem werden relevante methodische Vorgehensweisen diskutiert - von der (Online-) Befragung über verschiedene Formen der Beobachtung (auch unter Zuhilfenahme von bestehenden Datensätzen und den dort manifesten Verhaltensspuren) bis hin zur Inhaltsanalyse (einschließlich automatisierter und halbautomatisierter Verfahren). Besonderes Augenmerk gilt dabei den Spezifika der Kommunikation in Netzwerken, die sich in vielerlei Hinsicht von anderen Formen der (Individual- oder Massen-) Kommunikation unterscheidet.

Gleichzeitig ist ein Verständnis für die technologischen Grundlagen von Business Analytics Grundvoraussetzung. Die zeitnahe Bereitstellung aktueller Daten aus dem operativen Geschäftsbetrieb und die Zusammenführung dieser Daten mit Daten aus unterschiedlichsten externen Quellen zum Zwecke der Analyse, der Entscheidungsvorbereitung und der Prognose wird in Zeiten von Big Data immer wichtiger. Bisher boten Data Warehouses als Grundlage für OLAP- sowie Data Mining-Anwendungen hier die angemessene Informationstechnik. Dabei werden aus einer oder mehreren Datenquellen, bei denen es sich meist um operationale Datenbanken handelt, relevante Kenngrößen und Unternehmensdaten über einen ETL-Prozess (für Extraction, Transformation, Loading); auf diesem setzen dann die Anwendungen auf.

Dieser Ansatz bedarf in Zeiten, in denen die Datenbestände groß genug sind, um signifikant von paralleler Verarbeitung in einer Armada von Rechnern zu profitieren, einer umfassenden Überarbeitung, sowohl was die IT-Architektur als auch was die verwendete Rechentechnik betrifft. Daher widmet sich dieses Modul einerseits modernen Entwicklungen im Datenbankbereich (wie Hauptspeichersysteme, No/NewSQL-Systeme) und andererseits Rechenparadigmen wie Map-Reduce und deren Realisierung im Rahmen des Hadoop-Ecosystems.

Schließlich wird ein Rückbezug vorgenommen zur eingangs betrachteten Data Warehouse-Architektur, die in Gegenwart von Big Data einer Erweiterung bedarf. Gleichzeitig werden Anknüpfungspunkte für die folgenden Module geschaffen.

Newsletter bestellen
Newsletter bestellen

Einen Newsletter zu unseren Lehrgängen können Sie hier bestellen:

Newsletter bestellen